MATHEMATICS I

selected problems from the exam tests in previous years

I. LINEAR ALGEBRA

- 1. a) Define the notions dimension and basis of a vector space V.
- b) Decide whether the vectors $\vec{x} = (4, 2, 0), \ \vec{y} = (1, 2, -1)$ a $\vec{z} = (7, 8, 1)$ form a basis in the vector space $V(\mathbb{E}_3)$.
- c) If the vector $\vec{u} = (21, 18, 3)$ can be expressed as a linear combination of the vectors $\vec{x}, \vec{y}, \vec{z}$, find the coefficients in this combination.
- 2. a) Define what it means that vectors $\vec{u}_1, \ldots, \vec{u}_n$ are *linearly dependent*, respectively *linearly independent*.
- b) For which values of parameter $a \in \mathbb{R}$ are the vectors $\vec{u} = (-1, 0, 1), \vec{v} = (0, 1, a), \vec{w} = (2, a, a)$ linearly dependent?
- c) What is, in this case, dimension of the vector space generated by these vectors?
- 3. a) Define the notions rank of a matrix and regular matrix.
- b) For which values of parameter $\alpha \in \mathbb{R}$ is the rank of the matrix $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -3 & \alpha \\ -3 & 4 & 1 \end{pmatrix}$ equal to 3 and for which α is the rank equal to 2?
- c) Is matrix A regular for $\alpha = 1$? (Give reasons for your answer.)
- 4. a) Define the notion of an *inverse matrix* to a square matrix A.
- b) Decide about the existence of the inverse matrix to the matrix $A = \begin{pmatrix} 1, & 0, & 0 \\ 3, & 1, & 0 \\ 0 & 3 & 1 \end{pmatrix}$.
- c) If the inverse matrix exists, calculate it. Verify the result by computing the product $A \cdot A^{-1}$.
- 5. $A = \begin{pmatrix} 3, & 1 \\ 5, & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0, & 1 \\ -2, & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 2, & 2 \\ 2, & -1 \end{pmatrix}$
- a) Find the matrix A^{-1} . b) Find the matrix B^{-1} .
- c) Calculate matrix X such that $A \cdot X \cdot B = C$.
- 6. Given the matrix $A = \begin{pmatrix} 1, 1, 0 \\ 0, 0, 3 \\ 0, 2, 1 \end{pmatrix}$.
- a) Calculate the matrix $B = A^2 (= A \cdot A)$.
- b) Define the notion of a *regular matrix*. Decide if the given matrix A is regular.
- c) If the inverse matrix to A exists, calculate it.
- 7. Given the matrix with parameters $a, b \in \mathbb{R}$: $A = \begin{pmatrix} 1, & 0, & -1, & -1 \\ 0, & -1, & -1, & 1 \\ a, & b, & 0, & 0 \\ -1 & -1 & 1 & 0 \end{pmatrix}$.
- a) Calculate the determinant of matrix A.
- b) Define the notions of a *regular matrix* and a *singular matrix*.
- c) For which values of parameters a, b does the homogeneous system of linear algebraic equations $A \cdot X = O$ have a non-zero solution?
- 8. a) Explain principles of the Cramer rule. Under which conditions it can be applied?

b) Verify the assumptions for the system

$$\begin{array}{rcl}
x + y + 2z &=& 1\\
2x + y &=& -4\\
5x + y - 3z &=& -13
\end{array}$$

- c) Applying Cramer's rule, calculate the value of unknown y.
- 9. a) Calculate the determinant of the system with parameter $a \in \mathbb{R}$:

- b) Explain principles of the Cramer rule. Is it possible to apply Cramer's rule to the system given above if a = 1? (Give reasons for your answer.)
- c) Assuming that a = 1, calculate the value of unknown z.
- 10. a) Write the Frobenius theorem.
 - b) What is the number of solutions of the given system in dependence on parameter $a \in \mathbb{R}$:

- c) Solve the system for a = 1.
- 11. a) Define the notions *eigenvalue* and *eigenvector* of a square matrix.
 - b) For which value of parameter $c \in \mathbb{R}$ does matrix A have the eigenvalue $\lambda = 0$?

$$A = \left(\begin{array}{cc} c, & c-5 \\ 6, & -3 \end{array}\right)$$

- c) Calculate the eigenvalues and the associated eigenvectors of matrix A if c = 4.
- 12. a) Define the notions *eigenvalue* and *eigenvector* of a square matrix.
- b) Find all eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 3, & 1, & 0 \\ -4, & -1, & 0 \\ 4, & -8, & -2 \end{pmatrix}$.

II. DIFFERENTIAL CALCULUS

1. a) Evaluate

$$\lim_{n \to +\infty} (\sqrt{n^2 + 1} - \sqrt{n^2 - 1}).$$

- b) Define what it means that the sequence $\{a_n\}$ is increasing.
- c) Create an increasing sequence whose limit is 3.
- 2. a) Evaluate $n^{\frac{1}{2}}$

$$\lim_{n \to +\infty} \frac{n + \cos(n^2)}{2n + 1}.$$

- b) Define what it means that the sequence $\{a_n\}$ is decreasing.
- c) Create a decreasing sequence whose limit is 3.

3. a) Evaluate
$$\lim_{n \to +\infty} \frac{(2n-1)^2 - 4n^2 + 1}{n^2 - (n+5)^2}$$

- b)Write the theorem on a limit of a subsequence.
- c) Create a sequence that has no limit. (Give reasons why your sequence has no limit.)
- 4. a) Using the definition, decide about the monotonicity of the sequence $\{\frac{n+1}{2n+1}\}$.
 - $\lim_{n \to +\infty} n(\sqrt{n^2 + 1} n).$ b) Evaluate the limit of the sequence

c) Evaluate the limit of the function $\lim_{x\to 0} \frac{\cos x - 1}{x \sin x}$. If you apply l'Hospital's rule, verify its assumptions.

- 5. a) Given the function $f: f(x) = \frac{x}{\sqrt{x^2 4x}}$. Find D(f).
 - b) Calculate the limits of f(x) for $x \to +\infty$ and $x \to 0$ (if the limits exist).
 - c) Is the given function f odd, even or periodic? (Give reasons for your answer.)
- a) Given the function f(x) = arccos(x² 1). Specify D(f).
 b) Write the equation of the tangent line to the graph of function f at the point [x₀, f(x₀)], if x₀ = 1.
 - c) Is function f even or odd? (Give reasons for your answer.)
- 7. a) Given the function $f: f(x) = \ln(x^2 + 4x + 3)$. Specify D(f).
 - b) Write the equation of the tangent line to the graph of function f at the point $[x_0, f(x_0)]$, if $x_0 = 1$.

c) Using the linear approximation of f (i.e. the result of part b)), calculate an approximate value of function f at the point x = 0, 9.

Other variants of problem 7 with different functions f and points x_0 :

b)
$$f(x) = x + \sqrt{1 - x^2}$$

c) $x_0 = 0$
b) $f(x) = \frac{x + 2}{\sqrt{5 - x}}$
c) $x_0 = 1$
c) $x_0 = 1$
c) $x_0 = -\frac{1}{2}$

8. a) Define the notion derivative of function f at point x_0 .

b) Calculate the derivative of the function $f : f(x) = \sqrt[3]{e^{-x} + 1}$. Specify the domain of the derivative.

c) Write the equation of the tangent line and the normal line to the graph of function f at the point $[x_0, f(x_0)]$, if $x_0 = 0$.

In problems 9–11:

- a) define absolute extremes of function f on the interval I,
- b) give reasons for the existence of the absolute extremes,
- c) find the absolute extremes (i.e. find their positions and values).

9.
$$f(x) = 3 - x - \frac{4}{(x+2)^2},$$
 $I = \langle -1, 2 \rangle$
10. $f(x) = x + 3\sqrt[3]{x^2},$ $I = \langle -1, 1 \rangle$

11.
$$f(x) = 2\sqrt{x-1} - x + 2,$$
 $I = \langle 1, 5 \rangle$

In problems 12–14:

- a) find intervals of monotonicity and local extremes of the given function f,
- b) find points of inflection and intervals where function f is concave up or down.
- c) Sketch the graph.

12.
$$f(x) = 1 + x^2 - \frac{1}{2}x^4$$
 13. $f(x) = (x - 3)\sqrt{x}$ 14. $f(x) = e^{2x - x^2}$
15. Given the function $f(x) = \frac{1}{9 - x^2}$.

- a) Specify D(f). Is the given function even or odd? (Give reasons for your answer.)
- b) Find intervals of monotonicity and local extremes.

- c) Calculate the limits of f for $x \to +\infty$, $x \to 3+$ and $x \to 3-$. Sketch the graph.
- 16. Given the function $f(x) = (x+2)e^{1/x}$ with the restricted domain $D(f) = (0, +\infty)$.
 - a) Find intervals of monotonicity and local extremes.
 - b) Calculate the limits of function f for $x \to +\infty$ and $x \to 0+$.
 - c) Sketch the graph.

In problems 17–20:

a) find intervals of monotonicity and local extremes for the given function f,

b) find intervals where function f is concave up or concave down and find points of inflection,

c) evaluate the limits at the end points of D(f) and sketch the graph.

17.
$$f(x) = 3 - x - \frac{4}{(x+2)^2}$$
 with the restricted domain $D(f) = (-2, +\infty)$

19. $f(x) = (x-2)e^x$ 20. $f(x) = x^2 + 2\ln(x+2)$. 18. $f(x) = x \ln x$

In problems 21 and 22:

- a) find intervals of monotonicity and local extremes for the given function f,
- b) find asymptotes of function f, c) sketch the graph.

21.
$$f(x) = \frac{x}{2} + \frac{2}{x}$$
 22. $f(x) = \frac{x-1}{x^2+3}$

- 23. $f(x) = \frac{x-2}{\sqrt{x^2+1}}$ a) Specify D(f). Calculate the limits for $x \to +\infty$ and $x \to -\infty$.
 - b) Find f'(x) (including the domain).
 - c) Find intervals of monotonicity and local extremes.
- 24. a) Evaluate the coefficients and write Taylor's polynomial of the 5-th degree of the function $f(x) = e^x$ with the center at the point $x_0 = 0$. Write the form of the remainder. b) Applying Taylor's polynomial, calculate the value of $e^{-1/3}$ with the error less than 0.001.
- 25. a) Evaluate the coefficients and write Taylor's polynomial of the 6-th degree of the function $f(x) = \cos x$ with the center at the point $x_0 = 0$. Write the form of the remainder. b) Evaluate the coefficients and write Taylor's polynomial of the 5-th degree of the same function f with the center at the point $x_0 = \pi/2$.
- a) Evaluate the coefficients and write Taylor's polynomial T_2 of the 2nd degree of the 26.function $f(x) = x + \sqrt{x+1}$ withy the center $x_0 = 0$. Write the form of the remeinder. b) Estimate the error when using polynomial T_2 for the approximate evaluation of the function value of f at the point x = 1/2.

III. INTEGRAL CALCULUS

In problems 1–6:

a) write the theorem on the integration by parts (including the assumptions),

b) evaluate the integral $\int f(x) dx$, where function f has the concrete form

- 2. $f(x) = x^2 \ln x$ 1. $f(x) = x \operatorname{arctg} x$
- 3. $f(x) = (x^2 + x + 2) e^x$ 5. $f(x) = (3x 5) \sin x$ 4. $f(x) = \ln^2 x$
- 6. $f(x) = (2x+3)e^{3x}$ 5. $f(x) = (3x - 5) \sin x$

On which intervals do the integrals exist?

In problems 7–20:

a) write the theorem on integration by substitution (including the assumptions),

b) evaluate the integral $\int f(x) dx$, where function f has the concrete form

 $7. \quad f(x) = \cos(1 - 2x) \qquad 8. \quad f(x) = \frac{x - 2}{x^2 - 4x + 8}$ $9. \quad f(x) = \frac{e^{2x}}{2 + e^{2x}} \qquad 10. \quad f(x) = \frac{x^3}{\sqrt{x^4 + 7}}$ $11. \quad f(x) = \frac{1}{1 + \sqrt{x}} \qquad 12. \quad f(x) = \frac{e^{1/x}}{x^2}$ $13. \quad f(x) = x\sqrt{1 - x^2} \qquad 14. \quad f(x) = \frac{\cos x}{\sqrt[3]{\sin^2 x}}$ $15. \quad f(x) = \left(\frac{1}{1 + \ln^2 x} + \frac{1}{\sqrt{\ln x}}\right)\frac{1}{x} \qquad 16. \quad f(x) = \sin^2 x \cos^3 x$ $17. \quad f(x) = \cos^2 x + \cos^3 x \qquad 18. \quad f(x) = \cos^7 x$ $19. \quad f(x) = x^3 e^{-x^2} \qquad 20. \quad f(x) = \frac{\sqrt{x - 2}}{x - 1}$

On which intervals do the integrals exist?

In problems 21–26 calculate the integral of the given rational function. On which intervals do the integrals exist?

21. $\int \frac{x^3}{x^2 + 3x + 2} \, dx$ 22. $\int \frac{2x + 1}{x^2 + 4x + 4} \, dx$ 23. $\int \frac{x}{(x+1)(x+2)(x+5)} \, dx$ 24. $\int \frac{1}{(x+1)^2(x+2)} \, dx$

25.
$$\int \frac{x-8}{x^3-4x^2+4x} \, \mathrm{d}x$$
 26. $\int \frac{1}{x^2-x+1} \, \mathrm{d}x$

a) Calculate the area of the region, which is for x ∈ (1,2) bounded by the x-axis and the curve y = x² + 1/x².
b) Evaluate the definite integral ∫₀¹(3x + 1) e^x dx.

a) Find the antiderivative (and the interval of its existence) to the function f(x) = 1/(4+x^2).
b) Calculate the area of the region, which is bounded by the x-axis and by the curves y = 1/(4+x^2), x = 0, x = 2.
c) Evaluate the improper integral ∫^{+∞}_{-∞} f(x) dx.

- 29. Given the function $f(x) = \frac{1}{x^2 + x}$. a) Calculate the integral $\int f(x) dx$. Give the intervals of its existence.
 - b) Evaluate the definite integral $\int_1^3 f(x) \, dx$.
 - c) Evaluate the integrals $\int_0^1 f(x) dx$ a $\int_3^\infty f(x) dx$. Do the integrals converge?
- 30. a) Find the domain and sketch the graph of the function $y = \sqrt{x-1}$.

b) Sketch the region bounded by the curves $y = \sqrt{x-1}$, x = 0, y = 0 a y = 1 and evaluate its area.

c) Calculate the volume of the body which arises by rotation of the above region about the y-axis.

31. Given the function $f(x) = x^2 \sin x$.

a) Calculate the integral $\int f(x) dx$. Verify the result by differentiation.

b) Find the mean value of the function f on the interval $\langle 0, \pi \rangle$, i.e. the value $\mu = \frac{1}{\pi} \int_0^{\pi} f(x) dx$.

32. a) Sketch a region in the 1st quadrant in \mathbb{E}_2 , that is bounded by the graph of the function $f(x) = \sin x$ and by the straight line $x = \pi/2$. Calculate the volume of the body, which arises by rotation of this region about the x-axis.

b) Calculate the area of the region, that is for $x \in \langle 0, \pi/2 \rangle$ bounded by the *x*-axis and the curve $y = \cos^4 x \sin x$.

- 33. a) Calculate the integral and give intervals of its existence: $\int \frac{\sqrt{x}-2}{x} dx$.
 - b) Evaluate the area of the region, that is for $x \in \langle \frac{1}{4}, 1 \rangle$ bounded by the *x*-axis ad the curve $y = \frac{\sqrt{x-2}}{x}$.

c) Evaluate the improper integral $\int_0^1 (\frac{1}{\sqrt{x}} - \frac{1}{x}) \, dx$. Does the integral converge?

- 34. Given the function $f(x) = (2x+3) \sin 2x$.
 - a) Calculate the integral $\int f(x) dx$. Verify the result by differentiation.
 - b) Evaluate the area of the region, which is for $x \in \langle 0, \pi/4 \rangle$ bounded
 - by the *x*-axis and by the curve $y = (2x + 3) \sin 2x$.
- 35. a) Give intervals of the existence and calculate the integral $\int \frac{x-8}{x^3-4x^2+4x} dx$.
 - b) Give reasons for the existence and evaluate the definite integral $\int_3^4 f(x) dx$. Simplify the result.

c) Calculate the improper integral $\int_{3}^{+\infty} \frac{x-8}{x^3-4x^2+4x} \, dx$. Does the integral converge?