MATHEMATICS I

selected problems from the exam tests in previous years

I. LINEAR ALGEBRA

1. a) Define the notions dimension and basis of a vector space V.
b) Decide whether the vectors $\vec{x}=(4,2,0), \vec{y}=(1,2,-1)$ a $\vec{z}=(7,8,1)$ form a basis in the vector space $V\left(\mathbb{E}_{3}\right)$.
c) If the vector $\vec{u}=(21,18,3)$ can be expressed as a linear combination of the vectors \vec{x}, \vec{y}, \vec{z}, find the coefficients in this combination.
2. a) Define what it means that vectors $\vec{u}_{1}, \ldots, \vec{u}_{n}$ are linearly dependent, respectively linearly independent.
b) For which values of parameter $a \in \mathbb{R}$ are the vectors $\vec{u}=(-1,0,1), \vec{v}=(0,1, a)$, $\vec{w}=(2, a, a)$ linearly dependent?
c) What is, in this case, dimension of the vector space generated by these vectors?
3. a) Define the notions rank of a matrix and regular matrix.
b) For which values of parameter $\alpha \in \mathbb{R}$ is the rank of the matrix $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 2 & -3 & \alpha \\ -3 & 4 & 1\end{array}\right)$
equal to 3 and for which α is the rank equal to 2 ?
c) Is matrix A regular for $\alpha=1$? (Give reasons for your answer.)
4. a) Define the notion of an inverse matrix to a square matrix A.
b) Decide about the existence of the inverse matrix to the matrix $A=\left(\begin{array}{lll}1, & 0, & 0 \\ 3, & 1, & 0 \\ 0, & 3, & 1\end{array}\right)$.
c) If the inverse matrix exists, calculate it. Verify the result by computing the product $A \cdot A^{-1}$.
5. $\quad A=\left(\begin{array}{ll}3, & 1 \\ 5, & 2\end{array}\right), \quad B=\left(\begin{array}{cc}0, & 1 \\ -2, & 3\end{array}\right), \quad C=\left(\begin{array}{cc}2, & 2 \\ 2, & -1\end{array}\right)$
a) Find the matrix A^{-1} b) Find the matrix B^{-1}.
c) Calculate matrix X such that $A \cdot X \cdot B=C$.
6. Given the matrix $A=\left(\begin{array}{ccc}1, & 1, & 0 \\ 0, & 0, & 3 \\ 0, & 2, & 1\end{array}\right)$.
a) Calculate the matrix $B=A^{2}(=A \cdot A)$.
b) Define the notion of a regular matrix. Decide if the given matrix A is regular.
c) If the inverse matrix to A exists, calculate it.
7. Given the matrix with parameters $a, b \in \mathbb{R}: A=\left(\begin{array}{cccc}1, & 0, & -1, & -1 \\ 0, & -1, & -1, & 1 \\ a, & b, & 0, & 0 \\ -1, & -1, & 1, & 0\end{array}\right)$.
a) Calculate the determinant of matrix A.
b) Define the notions of a regular matrix and a singular matrix.
c) For which values of parameters a, b does the homogeneous system of linear algebraic equations $A \cdot X=O$ have a non-zero solution?
8. a) Explain principles of the Cramer rule. Under which conditions it can be applied?
b) Verify the assumptions for the system

$$
\begin{array}{rlr}
x+y+2 z & = & 1 \\
2 x+y & = & -4 \\
5 x+y-3 z & = & -13
\end{array}
$$

c) Applying Cramer's rule, calculate the value of unknown y.
9. a) Calculate the determinant of the system with parameter $a \in \mathbb{R}$:

$$
\begin{aligned}
x+2 y+a z & =0 \\
-x+3 y+a z & =-8 \\
3 x-y+2 z & =13
\end{aligned}
$$

b) Explain principles of the Cramer rule. Is it possible to apply Cramer's rule to the system given above if $a=1$? (Give reasons for your answer.)
c) Assuming that $a=1$, calculate the value of unknown z.
10. a) Write the Frobenius theorem.
b) What is the number of solutions of the given system in dependence on parameter $a \in \mathbb{R}$:

$$
\begin{aligned}
x-y+z & =1 \\
x+y+3 z & =1 \\
(2 a-1) x+(a+1) y+z & =1-a
\end{aligned}
$$

c) Solve the system for $a=1$.
11. a) Define the notions eigenvalue and eigenvector of a square matrix.
b) For which value of parameter $c \in \mathbb{R}$ does matrix A have the eigenvalue $\lambda=0$?

$$
A=\left(\begin{array}{cc}
c, & c-5 \\
6, & -3
\end{array}\right)
$$

c) Calculate the eigenvalues and the associated eigenvectors of matrix A if $c=4$.
12. a) Define the notions eigenvalue and eigenvector of a square matrix.
b) Find all eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}3, & 1, & 0 \\ -4, & -1, & 0 \\ 4, & -8, & -2\end{array}\right)$.

II. DIFFERENTIAL CALCULUS

1. a) Evaluate

$$
\lim _{n \rightarrow+\infty}\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-1}\right) .
$$

b) Define what it means that the sequence $\left\{a_{n}\right\}$ is increasing.
c) Create an increasing sequence whose limit is 3 .
2. a) Evaluate

$$
\lim _{n \rightarrow+\infty} \frac{n+\cos \left(n^{2}\right)}{2 n+1}
$$

b) Define what it means that the sequence $\left\{a_{n}\right\}$ is decreasing.
c) Create a decreasing sequence whose limit is 3 .
3. a) Evaluate

$$
\lim _{n \rightarrow+\infty} \frac{(2 n-1)^{2}-4 n^{2}+1}{n^{2}-(n+5)^{2}} .
$$

b) Write the theorem on a limit of a subsequence.
c) Create a sequence that has no limit. (Give reasons why your sequence has no limit.)
4. a) Using the definition, decide about the monotonicity of the sequence $\left\{\frac{n+1}{2 n+1}\right\}$.
b) Evaluate the limit of the sequence $\lim _{n \rightarrow+\infty} n\left(\sqrt{n^{2}+1}-n\right)$.
c) Evaluate the limit of the function $\quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x \sin x}$. If you apply l'Hospital's rule, verify its assumptions.
5. a) Given the function $f: f(x)=\frac{x}{\sqrt{x^{2}-4 x}}$. Find $D(f)$.
b) Calculate the limits of $f(x)$ for $x \rightarrow+\infty$ and $x \rightarrow 0$ (if the limits exist).
c) Is the given function f odd, even or periodic? (Give reasons for your answer.)
6. a) Given the function $f(x)=\arccos \left(x^{2}-1\right)$. Specify $D(f)$.
b) Write the equation of the tangent line to the graph of function f at the point $\left[x_{0}, f\left(x_{0}\right)\right]$, if $x_{0}=1$.
c) Is function f even or odd? (Give reasons for your answer.)
7. a) Given the function $f: f(x)=\ln \left(x^{2}+4 x+3\right)$. Specify $D(f)$.
b) Write the equation of the tangent line to the graph of function f at the point $\left[x_{0}, f\left(x_{0}\right)\right]$, if $x_{0}=1$.
c) Using the linear approximation of f (i.e. the result of part b)), calculate an approximate value of function f at the point $x=0,9$.

Other variants of problem 7 with different functions f and points x_{0} :
b) $f(x)=x+\sqrt{1-x^{2}}$
b) $f(x)=\frac{x+2}{\sqrt{5-x}}$
b) $f(x)=\arcsin \sqrt{x+1}$
c) $x_{0}=0$
c) $x_{0}=1$
c) $x_{0}=-\frac{1}{2}$
8. a) Define the notion derivative of function f at point x_{0}.
b) Calculate the derivative of the function $f: f(x)=\sqrt[3]{\mathrm{e}^{-x}+1}$. Specify the domain of the derivative.
c) Write the equation of the tangent line and the normal line to the graph of function f at the point $\left[x_{0}, f\left(x_{0}\right)\right]$, if $x_{0}=0$.

In problems 9-11:
a) define absolute extremes of function f on the interval I,
b) give reasons for the existence of the absolute extremes,
c) find the absolute extremes (i.e. find their positions and values).
9. $f(x)=3-x-\frac{4}{(x+2)^{2}}$,

$$
I=\langle-1,2\rangle
$$

10. $f(x)=x+3 \sqrt[3]{x^{2}}$, $I=\langle-1,1\rangle$
11. $f(x)=2 \sqrt{x-1}-x+2, \quad I=\langle 1,5\rangle$

In problems 12-14:
a) find intervals of monotonicity and local extremes of the given function f,
b) find points of inflection and intervals where function f is concave up or down.
c) Sketch the graph.
12. $f(x)=1+x^{2}-\frac{1}{2} x^{4}$
13. $f(x)=(x-3) \sqrt{x}$
14. $f(x)=\mathrm{e}^{2 x-x^{2}}$
15. Given the function $f(x)=\frac{1}{9-x^{2}}$.
a) Specify $D(f)$. Is the given function even or odd? (Give reasons for your answer.)
b) Find intervals of monotonicity and local extremes.
c) Calculate the limits of f for $x \rightarrow+\infty, \quad x \rightarrow 3+$ and $x \rightarrow 3-$. Sketch the graph.
16. Given the function $f(x)=(x+2) \mathrm{e}^{1 / x}$ with the restricted domain $D(f)=(0,+\infty)$.
a) Find intervals of monotonicity and local extremes.
b) Calculate the limits of function f for $x \rightarrow+\infty$ and $x \rightarrow 0+$.
c) Sketch the graph.

In problems 17-20:
a) find intervals of monotonicity and local extremes for the given function f,
b) find intervals where function f is concave up or concave down and find points of inflection,
c) evaluate the limits at the end points of $D(f)$ and sketch the graph.
17. $f(x)=3-x-\frac{4}{(x+2)^{2}}$ with the restricted domain $D(f)=(-2,+\infty)$
18. $f(x)=x \ln x$
19. $f(x)=(x-2) e^{x}$
20. $f(x)=x^{2}+2 \ln (x+2)$.

In problems 21 and 22:
a) find intervals of monotonicity and local extremes for the given function f,
b) find asymptotes of function f, \quad c) sketch the graph.
21. $f(x)=\frac{x}{2}+\frac{2}{x}$
22. $f(x)=\frac{x-1}{x^{2}+3}$
23. $f(x)=\frac{x-2}{\sqrt{x^{2}+1}} \quad$ a) Specify $D(f)$. Calculate the limits for $x \rightarrow+\infty$ and $x \rightarrow-\infty$.
b) Find $f^{\prime}(x)$ (including the domain).
c) Find intervals of monotonicity and local extremes.
24. a) Evaluate the coefficients and write Taylor's polynomial of the 5 -th degree of the function $f(x)=\mathrm{e}^{x}$ with the center at the point $x_{0}=0$. Write the form of the remainder.
b) Applying Taylor's polynomial, calculate the value of $\mathrm{e}^{-1 / 3}$ with the error less than 0.001.
25. a) Evaluate the coefficients and write Taylor's polynomial of the 6 -th degree of the function $f(x)=\cos x$ with the center at the point $x_{0}=0$. Write the form of the remainder.
b) Evaluate the coefficients and write Taylor's polynomial of the 5 -th degree of the same function f with the center at the point $x_{0}=\pi / 2$.
26. a) Evaluate the coefficients and write Taylor's polynomial T_{2} of the 2nd degree of the function $f(x)=x+\sqrt{x+1}$ withy the center $x_{0}=0$. Write the form of the remeinder.
b) Estimate the error when using polynomial T_{2} for the approximate evaluation of the function value of f at the point $x=1 / 2$.

III. INTEGRAL CALCULUS

In problems 1-6:
a) write the theorem on the integration by parts (including the assumptions),
b) evaluate the integral $\int f(x) \mathrm{d} x$, where function f has the concrete form

1. $f(x)=x \operatorname{arctg} x$
2. $f(x)=x^{2} \ln x$
3. $f(x)=\left(x^{2}+x+2\right) e^{x}$
4. $f(x)=\ln ^{2} x$
5. $f(x)=(3 x-5) \sin x$
6. $f(x)=(2 x+3) e^{3 x}$

On which intervals do the integrals exist?
In problems 7-20:
a) write the theorem on integration by substitution (including the assumptions),
b) evaluate the integral $\int f(x) \mathrm{d} x$, where function f has the concrete form
7. $f(x)=\cos (1-2 x)$
8. $f(x)=\frac{x-2}{x^{2}-4 x+8}$
9. $f(x)=\frac{e^{2 x}}{2+e^{2 x}}$
10. $f(x)=\frac{x^{3}}{\sqrt{x^{4}+7}}$
11. $f(x)=\frac{1}{1+\sqrt{x}}$
12. $f(x)=\frac{e^{1 / x}}{x^{2}}$
13. $f(x)=x \sqrt{1-x^{2}}$
14. $f(x)=\frac{\cos x}{\sqrt[3]{\sin ^{2} x}}$
15. $f(x)=\left(\frac{1}{1+\ln ^{2} x}+\frac{1}{\sqrt{\ln x}}\right) \frac{1}{x}$
16. $f(x)=\sin ^{2} x \cos ^{3} x$
17. $f(x)=\cos ^{2} x+\cos ^{3} x$
18. $f(x)=\cos ^{7} x$
19. $f(x)=x^{3} e^{-x^{2}}$
20. $f(x)=\frac{\sqrt{x-2}}{x-1}$

On which intervals do the integrals exist?
In problems 21-26 calculate the integral of the given rational function. On which intervals do the integrals exist?
21. $\int \frac{x^{3}}{x^{2}+3 x+2} \mathrm{~d} x$
22. $\int \frac{2 x+1}{x^{2}+4 x+4} \mathrm{~d} x$
23. $\int \frac{x}{(x+1)(x+2)(x+5)} \mathrm{d} x$
24. $\int \frac{1}{(x+1)^{2}(x+2)} \mathrm{d} x$
25. $\int \frac{x-8}{x^{3}-4 x^{2}+4 x} \mathrm{~d} x$
26. $\int \frac{1}{x^{2}-x+1} \mathrm{~d} x$
27. a) Calculate the area of the region, which is for $x \in\langle 1,2\rangle$ bounded by the x-axis and the curve $y=x^{2}+\frac{1}{x^{2}}$.
b) Evaluate the definite integral $\int_{0}^{1}(3 x+1) \mathrm{e}^{x} \mathrm{~d} x$.
28. a) Find the antiderivative (and the interval of its existence) to the function $f(x)=\frac{1}{4+x^{2}}$.
b) Calculate the area of the region, which is bounded by the x-axis and by the curves $y=\frac{1}{4+x^{2}}, x=0, x=2$.
c) Evaluate the improper integral $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x$.
29. Given the function $f(x)=\frac{1}{x^{2}+x}$.
a) Calculate the integral $\int f(x) \mathrm{d} x$. Give the intervals of its existence.
b) Evaluate the definite integral $\int_{1}^{3} f(x) \mathrm{d} x$.
c) Evaluate the integrals $\int_{0}^{1} f(x) \mathrm{d} x$ a $\int_{3}^{\infty} f(x) \mathrm{d} x$. Do the integrals converge?
30. a) Find the domain and sketch the graph of the function $y=\sqrt{x-1}$.
b) Sketch the region bounded by the curves $y=\sqrt{x-1}, x=0, y=0$ a $y=1$ and evaluate its area.
c) Calculate the volume of the body which arises by rotation of the above region about the y-axis.
31. Given the function $f(x)=x^{2} \sin x$.
a) Calculate the integral $\int f(x) \mathrm{d} x$. Verify the result by differentiation.
b) Find the mean value of the function f on the interval $\langle 0, \pi\rangle$, i.e. the value $\mu=$ $\frac{1}{\pi} \int_{0}^{\pi} f(x) \mathrm{d} x$.
32. a) Sketch a region in the 1 st quadrant in \mathbb{E}_{2}, that is bounded by the graph of the function $f(x)=\sin x$ and by the straight line $x=\pi / 2$. Calculate the volume of the body, which arises by rotation of this region about the x-axis.
b) Calculate the area of the region, that is for $x \in\langle 0, \pi / 2\rangle$ bounded by the x-axis and the curve $y=\cos ^{4} x \sin x$.
33. a) Calculate the integral and give intervals of its existence: $\int \frac{\sqrt{x}-2}{x} \mathrm{~d} x$.
b) Evaluate the area of the region, that is for $x \in\left\langle\frac{1}{4}, 1\right\rangle$ bounded by the x-axis ad the curve $y=\frac{\sqrt{x}-2}{x}$.
c) Evaluate the improper integral $\int_{0}^{1}\left(\frac{1}{\sqrt{x}}-\frac{1}{x}\right) \mathrm{d} x$. Does the integral converge?
34. Given the function $f(x)=(2 x+3) \sin 2 x$.
a) Calculate the integral $\int f(x) \mathrm{d} x$. Verify the result by differentiation.
b) Evaluate the area of the region, which is for $x \in\langle 0, \pi / 4\rangle$ bounded by the x-axis and by the curve $y=(2 x+3) \sin 2 x$.
35. a) Give intervals of the existence and calculate the integral $\int \frac{x-8}{x^{3}-4 x^{2}+4 x} \mathrm{~d} x$.
b) Give reasons for the existence and evaluate the definite integral $\int_{3}^{4} f(x) \mathrm{d} x$. Simplify the result.
c) Calculate the improper integral $\int_{3}^{+\infty} \frac{x-8}{x^{3}-4 x^{2}+4 x} \mathrm{~d} x$. Does the integral converge?

