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pdf, hf, gf, etc. ... Why, when?

* We use several characteristics to describe probability law
... which?
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* Let us consider a sequence of random variables {Xi}i=12,.. or a random

process {Xi} 0

... orasequence {Xi}i=12,. of observations of the random in times 0<

t1 <tx<...(denote X;= Xii,1=1

2,..)

* We need more than one probability measure ... 1t’s too complicated ...
P(X1<x1,X2<X2,...,Xn<Xn) = F(X1,X2,...,Xn) - n-dimensional distribution

» There appears a question of independence ...
X 1s independent of Y <=> P(X<x|Y<y) = P(X=x) Vx.y.

* Dependence 1s characterised by some strange functions like acf, pacf,

etc.

* What we can do with this? - Data model description, dependecy
structure, forecasting, change detection, etc. etc.
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Markov property in discrete time

 Let us consider a sequence of discrete random variables {Xi}i=12....

with values in &

* We consider a simplified dependency structure:
,.the future state of the process depends only on the present state and it 1s
independent of previous trajectory*

 When we are in the time #,, the Markov property says:

P[Xn+1:an+l|Xn:an/\Xn-1:an-l/\ ... A Xo=ao]| = P|Xs=an | Xn-1=an-1]

e Then we have: P[Xo=aornXi=a1 A ... A Xp=au] =

Denote t

ao].P[X1 = ai1|Xo = ao].P[X2 = a2/ Xi = a1]...P[X, = an | Xu-1 = an-1]

ne initial distribution, p=(p1, ..., pn), Where p;= P[Xo = ai]

Denote t

ne transition probability matrix P(k) = {pii(k)}ij=12....n

where pii(k) = P[Xk = a;| Xk-1 = ai]
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(homogeneous case)
* Let us consider a finite set of states: S = {a1, aa, ..., an} along with the
initial distribution, p=(p1, ..., p»), where p;= P[Xo = ai]

* In homogeneous case p;i(k) = p;, 1.e. it does not depend on the time.
Then the transition probability matrices P(k) are the same for all k=1, 2,
..., and we talk about the homogeneous Markov chain with the transition
probability matrix P.

* The Markov chain is determined by the triple ( S, p, P).
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Markov chain - the random walk with reflecting walls
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Markov chain - the random walk without bounds
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Markov chain - the birth and death process

(state = the population size) i% —_
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p p p p p p p p
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p" = P(Xppn = j| Xe = i) = P(X,, = j | Xo = i)
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Theorem (Chapman-Kolmogorov formula):

Let us consider a homogeneous Markov chain {Xx}i=12.... with finite set of

states S = {a1, a2, ..., as} and a transition probability matrix P. Then for any
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pij(s,t) = P(X; = j| X5 = 1)
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Theorem (Chapman-Kolmogorov formula):

Let us consider a homogeneous Markov chain {Xx}i=12.... with finite set of

states S = {a1, a2, ..., as} and a transition probability matrix P. Then for any
0 <m < n and any two states 1,/ the following formula holds

pw Zp(m) (n—m)

n—1 . .
for the margmal distribution: p Z p( ' Dri , OF In matrix form:

If there exists lim ﬁ( ")

n—-+oo

7 (stationary distribution) then 7 = 7.P
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Markov chain - very simple homogeneous example

P
2-gtate unreliable system: @ ) @
Po

S=1{0,1} P 1 —p1 D1
p =110} Po 1 —po
7=7P ;
T T =T —P1 Po o _
1 P)”T_T (pl —po> <7f1> <0>
PT _ nN7T =0
o+ 7 =1 To = Po T = P1
po+p1’ Po + P1

asymptotic availability asymptotic unavailability
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» Markov property in continuous time:

P(Xt =i|Xs =j)=P(Xt =i|Xs =j9Xs1 =j19'°°9Xsk =jk)=pij(S9t)

* pi(s,) €[0,1], P(s,t) =0
* pi(tt) =1, pi(t,) = 0, P(t,t) > 1

: ZPU(S» t) =1, P(s,t).e=e
JES
» Chapman-Kolmogorov equation:
pii(s,s+t+h) = sz‘k(& s+1t)pki(s+t,s+1t+h)
keS
P(s,s+t+h) = P(s,s+t).P(s+t,s+t+h)

 evolution law: p,(s+1t) = Z Pr(S)pri(s, s + 1)
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Continuous time x lrer

 Homogeneous process:  pii(s,t) = pij(t-5)

* Transition intensities:  4a = L8~ 9 = M0

* ¢i; = 1ntensity of persistence in the state s;

» the distribution of persistence in the state s; ~ Exp(-g.,)

e the transition intenzities matrix: /q” qi2. - qm\
d21 422 -+ (2n
Q —
\in dn2 - an/

* the system of Kolmogorov differential equations:
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dp, (1)

poi(h) =1— e” M = Ah + o(h) dr = —Ap, (1) + up, (¢)
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» Markov property in continuous time:

P(Xt =i|Xs =j)=P(Xt =i|Xs =j9Xs1 =j19'°°9Xsk =jk)=pij(S9t)

* Inhomogeneous process:  pii(s,f), transition intensities:

. pm(t,t—Fh) — 1 . pw(t,t—Fh)
() = lim (1) = lim
Q’LZ (t) h1—>1 O_|_ h ’ q J (t) h—)l O_|_ h

* giil(t) = intensity of persistence 1n the state s;, the dlstrlbutlon of

persistence in the state: pi(t,t+h) = exp / Z qi; (t+s) ds
O i
* the system of Kolmogorov differential equations:

P/(t,t+h) = P(t,t + h).Q(t + h)
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Semi-Markov process {x,}r=0

* Random process with values in S = {a1, ay, ..., as} .

n-1

NN 1,2,... only.

1

* Transitions between states occur in random times ¢ =

 Transitions follow some Markov process in discrete time wit transition matrix P
(nested Markov process).

 Let Fj(¢) be a transition cdf between states i and j. Denote H the matrix of Fj(¢).
« Semi-Markov process is given by the triple (p, P, H).
* The process {(Xn,tn)} n=0,1,2,... is homogeneous Markov process.

» Markov process in continuous time can be interpreted as a semi-Markov process
with exponential persistence times.

https://www.sciencedirect.com/topics/computer-science/semi-markov-process
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Markov process - random walk (Lévi flight)
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