# A gentle intro into Markov processes

• From the very basics ....

# A gentle intro into Markov processes

- From the very basics ....
- Markov property in discrete time: Markov chain

## A gentle intro into Markov processes

- From the very basics ....
- Markov property in discrete time: Markov chain
- Markov processes in continuous time

## A gentle intro into Markov processes

- From the very basics ....
- Markov property in discrete time: Markov chain
- Markov processes in continuous time
- Examples

# A gentle intro into Markov processes

- From the very basics ....
- Markov property in discrete time: Markov chain
- Markov processes in continuous time
- Examples

## A gentle intro into Markov processes

with examples

Gejza Dohnal, CTU Prague, Centre of Advanced Aerospace Technologies

• Always we are getting about a *probability space*  $(\Omega, \mathcal{F}, P)$ 

- Always we are getting about a *probability space*  $(\Omega, \mathcal{F}, P)$
- Let us consider a random variable X:  $(\Omega, \mathcal{F}) \rightarrow (R, \mathcal{B})$

... what is it?

- Always we are getting about a *probability space*  $(\Omega, \mathcal{F}, P)$
- Let us consider a random variable X:  $(\Omega, \mathcal{F}) \rightarrow (R, \mathcal{B})$

... what is it?

• Let us have a probability measure (law, distribution) P

... what it means?

- Always we are getting about a *probability space*  $(\Omega, \mathcal{F}, P)$
- Let us consider a random variable X:  $(\Omega, \mathcal{F}) \rightarrow (R, \mathcal{B})$

... what is it?

• Let us have a probability measure (law, distribution) P

... what it means?

• The probability measure determines a *conditional probability measure*  $P(X \in A \mid X \in B) = P(X \in A \cap B)/P(X \in B)$  ... how?

- Always we are getting about a *probability space*  $(\Omega, \mathcal{F}, P)$
- Let us consider a random variable X:  $(\Omega, \mathcal{F}) \rightarrow (R, \mathcal{B})$

... what is it?

• Let us have a *probability measure* (law, distribution) P

... what it means?

- The probability measure determines a *conditional probability measure*  $P(X \in A \mid X \in B) = P(X \in A \cap B)/P(X \in B)$  ... how?
- The probability measure is characterised by some functions like cdf, pdf, hf, qf, etc. ... why, when?

- Always we are getting about a *probability space*  $(\Omega, \mathcal{F}, P)$
- Let us consider a random variable X:  $(\Omega, \mathcal{F}) \rightarrow (R, \mathcal{B})$

... what is it?

• Let us have a probability measure (law, distribution) P

... what it means?

- The probability measure determines a *conditional probability measure*  $P(X \in A \mid X \in B) = P(X \in A \cap B)/P(X \in B)$  ... how?
- The probability measure is characterised by some functions like cdf, pdf, hf, qf, etc. ... why, when?
- We use several characteristics to describe probability law ... which?

• Let us consider a sequence of random variables  $\{X_i\}_{i=1,2,\dots}$  or a random process  $\{X_t\}_{t\geq 0}$ 

- Let us consider a sequence of random variables  $\{X_i\}_{i=1,2,\dots}$  or a random process  $\{X_t\}_{t\geq 0}$
- ... or a sequence  $\{X_{ti}\}_{i=1,2,...}$  of observations of the random in times  $0 \le t_1 < t_2 < ...$  (denote  $X_i = X_{ti}, i = 1, 2, ...$ )

- Let us consider a sequence of random variables  $\{X_i\}_{i=1,2,\dots}$  or a random process  $\{X_t\}_{t\geq 0}$
- ... or a sequence  $\{X_{ti}\}_{i=1,2,...}$  of observations of the random in times  $0 \le t_1 < t_2 < ...$  (denote  $X_i = X_{ti}, i = 1, 2, ...$ )
- We need more than one probability measure ... it's too complicated ...  $P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n) = F(x_1, x_2, ..., x_n)$  n-dimensional distribution

- Let us consider a sequence of random variables  $\{X_i\}_{i=1,2,...}$  or a random process  $\{X_t\}_{t\geq 0}$
- ... or a sequence  $\{X_{ti}\}_{i=1,2,...}$  of observations of the random in times  $0 \le t_1 < t_2 < ...$  (denote  $X_i = X_{ti}, i = 1, 2, ...$ )
- We need more than one probability measure ... it's too complicated ...  $P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n) = F(x_1, x_2, ..., x_n)$  n-dimensional distribution
- There appears a question of independence ... X is independent of Y  $\leq$  P(X $\leq$ x|Y $\leq$ y) = P(X $\leq$ x)  $\forall$ x,y.

- Let us consider a sequence of random variables  $\{X_i\}_{i=1,2,...}$  or a random process  $\{X_t\}_{t\geq 0}$
- ... or a sequence  $\{X_{ti}\}_{i=1,2,...}$  of observations of the random in times  $0 \le t_1 < t_2 < ...$  (denote  $X_i = X_{ti}, i = 1, 2, ...$ )
- We need more than one probability measure ... it's too complicated ...  $P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n) = F(x_1, x_2, ..., x_n)$  n-dimensional distribution
- There appears a question of independence ... X is independent of Y  $\leq$  P(X $\leq$ x|Y $\leq$ y) = P(X $\leq$ x)  $\forall$ x,y.
- Dependence is characterised by some strange functions like acf, pacf, etc.

- Let us consider a sequence of random variables  $\{X_i\}_{i=1,2,\dots}$  or a random process  $\{X_t\}_{t\geq 0}$
- ... or a sequence  $\{X_{ti}\}_{i=1,2,...}$  of observations of the random in times  $0 \le t_1 < t_2 < ...$  (denote  $X_i = X_{ti}, i = 1, 2, ...$ )
- We need more than one probability measure ... it's too complicated ...  $P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n) = F(x_1, x_2, ..., x_n)$  n-dimensional distribution
- There appears a question of independence ... X is independent of Y  $\leq$  P(X $\leq$ x|Y $\leq$ y) = P(X $\leq$ x)  $\forall$ x,y.
- Dependence is characterised by some strange functions like acf, pacf, etc.
- What we can do with this? Data model description, dependecy structure, forecasting, change detection, etc. etc.

• Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?
- ... and of a sequence  $\{a_1, a_2, a_3, ..., a_n\}$  (trajectory) (i.e. the event  $[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n]$ )?

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?
- ... and of a sequence  $\{a_1, a_2, a_3, ..., a_n\}$  (trajectory) (i.e. the event  $[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n]$ )?
- in general case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$ =  $P[X_1 = a_1].P[X_2 = a_2 | X_1 = a_1].P[X_3 = a_3 | X_2 = a_2 \land X_1 = a_1] ...$ ...  $P[X_n = a_n | X_{n-1} = a_{n-1} \land X_{n-2} = a_{n-2} \land ... \land X_1 = a_1]$ =  $p(a_1).p(a_2 | a_1).p(a_3 | a_2 a_1)...p(a_n | a_{n-1} a_{n-2}...a_2 a_1)$

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?
- ... and of a sequence  $\{a_1, a_2, a_3, ..., a_n\}$  (trajectory) (i.e. the event  $[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n]$ )?
- in general case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$ =  $P[X_1 = a_1].P[X_2 = a_2 | X_1 = a_1].P[X_3 = a_3 | X_2 = a_2 \land X_1 = a_1] ...$ ...  $P[X_n = a_n | X_{n-1} = a_{n-1} \land X_{n-2} = a_{n-2} \land ... \land X_1 = a_1]$ =  $p(a_1).p(a_2 | a_1).p(a_3 | a_2 a_1)...p(a_n | a_{n-1} a_{n-2}...a_2 a_1)$
- in i.i.d. case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$   $= P[X_1 = a_1].P[X_2 = a_2].P[X_3 = a_3]...P[X_n = a_n]$   $= p(a_1).p(a_2).p(a_3)...p(a_n)$

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?
- ... and of a sequence  $\{a_1, a_2, a_3, ..., a_n\}$  (trajectory) (i.e. the event  $[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n]$ )?
- in general case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$ =  $P[X_1 = a_1].P[X_2 = a_2 | X_1 = a_1].P[X_3 = a_3 | X_2 = a_2 \land X_1 = a_1] ...$ ...  $P[X_n = a_n | X_{n-1} = a_{n-1} \land X_{n-2} = a_{n-2} \land ... \land X_1 = a_1]$ =  $p(a_1).p(a_2 | a_1).p(a_3 | a_2 a_1)...p(a_n | a_{n-1} a_{n-2}...a_2 a_1)$
- in i.i.d. case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$   $= P[X_1 = a_1].P[X_2 = a_2].P[X_3 = a_3]...P[X_n = a_n]$   $= p(a_1).p(a_2).p(a_3)...p(a_n)$

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?
- ... and of a sequence  $\{a_1, a_2, a_3, ..., a_n\}$  (trajectory) (i.e. the event  $[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n]$ )?
- in general case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] = P[X_1 = a_1].P[X_2 = a_2 | X_1 = a_1].P[X_3 = a_3 | X_2 = a_2 \land X_1 = a_1] ...$ ...  $P[X_n = a_n | X_{n-1} = a_{n-1} \land X_{n-2} = a_{n-2} \land ... \land X_1 = a_1]$  $= p(a_1).p(a_2 | a_1).p(a_3 | a_2 a_1)...p(a_n | a_{n-1} a_{n-2}...a_2 a_1)$
- in i.i.d. case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$   $= P[X_1 = a_1].P[X_2 = a_2].P[X_3 = a_3]...P[X_n = a_n]$   $= p(a_1).p(a_2).p(a_3)...p(a_n)$

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?
- ... and of a sequence  $\{a_1, a_2, a_3, ..., a_n\}$  (trajectory) (i.e. the event  $[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n]$ )?
- in general case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] = P[X_1 = a_1].P[X_2 = a_2 | X_1 = a_1].P[X_3 = a_3 | X_2 = a_2 \land X_1 = a_1] ...$ ...  $P[X_n = a_n | X_{n-1} = a_{n-1} \land X_{n-2} = a_{n-2} \land ... \land X_1 = a_1]$  $= p(a_1).p(a_2|a_1).p(a_3|a_2a_1)...p(a_n|a_{n-1}a_{n-2}...a_2a_1)$
- in i.i.d. case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$

$$= P[X_1 = a_1].P[X_2 = a_2].P[X_3 = a_3]...P[X_n = a_n]$$

$$= p(a_1).p(a_2).p(a_3)...p(a_n)$$

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,\dots}$  with values in some countable set S
- What is the probability of  $[X_1 = a]$ ? ... and of  $[X_1 = a \land X_2 = b]$ ?
- ... and of a sequence  $\{a_1, a_2, a_3, ..., a_n\}$  (trajectory) (i.e. the event  $[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n]$ )?
- in general case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$ =  $P[X_1 = a_1].P[X_2 = a_2 | X_1 = a_1].P[X_3 = a_3 | X_2 = a_2 \land X_1 = a_1] ...$ ...  $P[X_n = a_n | X_{n-1} = a_{n-1} \land X_{n-2} = a_{n-2} \land ... \land X_1 = a_1]$ =  $p(a_1).p(a_2 | a_1).p(a_3 | a_2 a_1)...p(a_n | a_{n-1} a_{n-2}...a_2 a_1)$
- in i.i.d. case:  $P[X_1 = a_1 \land X_2 = a_2 \land ... \land X_n = a_n] =$



• Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S



Andrej Andrejevič Markov 1856 - 1922

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"



Andrej Andrejevič Markov 1856 - 1922

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"



Andrej Andrejevič Markov 1856 - 1922

• When we are in the time  $t_n$ , the Markov property says:

$$P[X_{n+1}=a_{n+1}|X_n=a_n \land X_{n-1}=a_{n-1} \land ... \land X_0=a_0] = P[X_{n+1}=a_{n+1} | X_n=a_n]$$

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"



Andrej Andrejevič Markov 1856 - 1922

• When we are in the time  $t_n$ , the Markov property says:

$$P[X_{n+1}=a_{n+1}|X_n=a_n \land X_{n-1}=a_{n-1} \land ... \land X_0=a_0] = P[X_{n+1}=a_{n+1} \mid X_n=a_n]$$

• Then we have:  $P[X_0 = a_0 \land X_1 = a_1 \land ... \land X_n = a_n] =$ =  $P[X_0 = a_0].P[X_1 = a_1|X_0 = a_0].P[X_2 = a_2|X_1 = a_1]...P[X_n = a_n | X_{n-1} = a_{n-1}]$ =  $p(a_0).p(a_1|a_0).p(a_2|a_1)...p(a_n|a_{n-1})$ 

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"



Andrej Andrejevič Markov 1856 - 1922

• When we are in the time  $t_n$ , the Markov property says:

$$P[X_{n+1}=a_{n+1}|X_n=a_n \land X_{n-1}=a_{n-1} \land ... \land X_0=a_0] = P[X_{n+1}=a_{n+1} \mid X_n=a_n]$$

• Then we have:  $P[X_0 = a_0 \land X_1 = a_1 \land ... \land X_n = a_n] =$ =  $P[X_0 = a_0].P[X_1 = a_1|X_0 = a_0].P[X_2 = a_2|X_1 = a_1]...P[X_n = a_n | X_{n-1} = a_{n-1}]$ =  $p(a_0).p(a_1|a_0).p(a_2|a_1)...p(a_n|a_{n-1})$ 

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"



Andrej Andrejevič Markov 1856 - 1922

• When we are in the time  $t_n$ , the Markov property says:

$$P[X_{n+1}=a_{n+1}|X_n=a_n \land X_{n-1}=a_{n-1} \land ... \land X_0=a_0] = P[X_{n+1}=a_{n+1}|X_n=a_n]$$

• Then we have:  $P[X_0 = a_0 \land X_1 = a_1 \land ... \land X_n = a_n] =$ =  $P[X_0 = a_0].P[X_1 = a_1 | X_0 = a_0].P[X_2 = a_2 | X_1 = a_1]...P[X_n = a_n | X_{n-1} = a_{n-1}]$ =  $p(a_0).p(a_1|a_0).p(a_2|a_1)...p(a_n|a_{n-1})$ 

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"



Andrej Andrejevič Markov 1856 - 1922

• When we are in the time  $t_n$ , the Markov property says:

$$P[X_{n+1}=a_{n+1}|X_n=a_n \land X_{n-1}=a_{n-1} \land ... \land X_0=a_0] = P[X_{n+1}=a_{n+1}|X_n=a_n]$$

• Then we have:  $P[X_0 = a_0 \land X_1 = a_1 \land ... \land X_n = a_n] =$ =  $P[X_0 = a_0].P[X_1 = a_1 | X_0 = a_0].P[X_2 = a_2 | X_1 = a_1]...P[X_n = a_n | X_{n-1} = a_{n-1}]$ =  $p(a_0).p(a_1|a_0).p(a_2|a_1)...p(a_n|a_{n-1})$ 



- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"
- When we are in the time  $t_n$ , the Markov property says:

$$P[X_{n+1}=a_{n+1}|X_n=a_n \land X_{n-1}=a_{n-1} \land \dots \land X_0=a_0] = P[X_n=a_n \mid X_{n-1}=a_{n-1}]$$

- Then we have:  $P[X_0 = a_0 \land X_1 = a_1 \land ... \land X_n = a_n] =$ =  $P[X_0 = a_0].P[X_1 = a_1 | X_0 = a_0].P[X_2 = a_2 | X_1 = a_1]...P[X_n = a_n | X_{n-1} = a_{n-1}]$
- Denote the *initial distribution*,  $p = (p_1, ..., p_n)$ , where  $p_i = P[X_0 = a_i]$

#### Markov property in discrete time

- Let us consider a sequence of discrete random variables  $\{X_i\}_{i=1,2,...}$  with values in S
- We consider a simplified dependency structure: ,,the future state of the process depends only on the present state and it is independent of previous trajectory"
- When we are in the time  $t_n$ , the Markov property says:

$$P[X_{n+1}=a_{n+1}|X_n=a_n \land X_{n-1}=a_{n-1} \land \dots \land X_0=a_0] = P[X_n=a_n \mid X_{n-1}=a_{n-1}]$$

- Then we have:  $P[X_0 = a_0 \land X_1 = a_1 \land ... \land X_n = a_n] =$ =  $P[X_0 = a_0].P[X_1 = a_1 | X_0 = a_0].P[X_2 = a_2 | X_1 = a_1]...P[X_n = a_n | X_{n-1} = a_{n-1}]$
- Denote the *initial distribution*,  $p = (p_1, ..., p_n)$ , where  $p_i = P[X_0 = a_i]$
- Denote the *transition probability matrix*  $\mathbf{P}(k) = \{p_{ij}(k)\}_{i,j=1,2,...,n}$  where  $p_{ij}(k) = P[X_k = a_i | X_{k-1} = a_i]$

# Markov process in discrete time - Markov chain (homogeneous case)

• Let us consider a finite set of states:  $S = \{a_1, a_2, ..., a_n\}$  along with the initial distribution,  $p = (p_1, ..., p_n)$ , where  $p_i = P[X_0 = a_i]$ 

# Markov process in discrete time - Markov chain (homogeneous case)

- Let us consider a finite set of states:  $S = \{a_1, a_2, ..., a_n\}$  along with the initial distribution,  $p = (p_1, ..., p_n)$ , where  $p_i = P[X_0 = a_i]$
- In homogeneous case  $p_{ij}(k) = p_{ij}$ , i.e. it does not depend on the time. Then the transition probability matrices P(k) are the same for all  $k = 1, 2, \ldots$ , and we talk about the homogeneous Markov chain with the transition probability matrix P.

# Markov process in discrete time - Markov chain (homogeneous case)

- Let us consider a finite set of states:  $S = \{a_1, a_2, ..., a_n\}$  along with the initial distribution,  $p = (p_1, ..., p_n)$ , where  $p_i = P[X_0 = a_i]$
- In homogeneous case  $p_{ij}(k) = p_{ij}$ , i.e. it does not depend on the time. Then the transition probability matrices P(k) are the same for all  $k = 1, 2, \ldots$ , and we talk about the homogeneous Markov chain with the transition probability matrix P.
- The Markov chain is determined by the triple (S, p, P).

#### Markov chain - the random walk with absorbent walls



#### Markov chain - the random walk with absorbent walls



#### Markov chain - the random walk with absorbent walls



#### Markov chain - the random walk with reflecting walls



$$p = (0, 0, 0, 0, 1, 0, 0, 0, 0)$$

# Markov chain - the random walk on a circle





#### Markov chain - the random walk on a circle



$$\mathbf{P} = \begin{pmatrix} 1-p-q & p & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q \\ q & 1-p-q & p & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & q & 1-p-q & p & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & q & 1-p-q & p & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & q & 1-p-q & p & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & q & 1-p-q & p & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & q & 1-p-q & p & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & q & 1-p-q & p \\ p & 0 & 0 & 0 & 0 & 0 & 0 & q & 1-p-q & p \end{pmatrix}$$

$$p = (0, 0, 0, 0, 1, 0, 0, 0, 0)$$

#### Markov chain - the random walk without bounds



#### Markov chain - the birth and death process





$$S = \{,,\text{work"},,,\text{fail"}\}$$
  
 $p = \{1,0\}$ 

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$S = \{,,\text{work"},,,\text{fail"}\}$$
  
 $p = \{1,0\}$ 

$$\mathbf{P} = \begin{pmatrix} 1 - p_{\text{fail}} & p_{\text{fail}} \\ p_{\text{work}} & 1 - p_{\text{work}} \end{pmatrix}$$

$$\begin{array}{c|c}
 & p_1 \\
\hline
 & p_0
\end{array}$$

$$S = \{0,1\}$$
  
 $p = \{1,0\}$ 

$$\mathbf{P} = \begin{pmatrix} 1 - p_1 & p_1 \\ p_0 & 1 - p_0 \end{pmatrix}$$

$$p_{ij}(s,t) = P(X_t = j | X_s = i)$$
  
 $p_{ij}^{(n)} = P(X_{t+n} = j | X_t = i) = P(X_n = j | X_0 = i)$ 

$$p_{ij}(s,t) = P(X_t = j | X_s = i)$$

$$p_{ij}^{(n)} = P(X_{t+n} = j | X_t = i) = P(X_n = j | X_0 = i)$$

$$p_i^{(n)} = P(X_n = i)$$

$$p_i^{(n)} = P(X_n = i)$$
the marginal distribution

$$p_{ij}(s,t) = P(X_t = j|X_s = i)$$

$$p_{ij}^{(n)} = P(X_{t+n} = j \mid X_t = i) = P(X_n = j \mid X_0 = i)$$

 $p_i^{(n)} = P(X_n = i)$ the marginal distribution

## Theorem (Chapman-Kolmogorov formula):



$$p_{ij}(s,t) = P(X_t = j | X_s = i)$$
  
 $p_{ij}^{(n)} = P(X_{t+n} = j | X_t = i) = P(X_n = j | X_0 = i)$   $p_i^{(n)} = P(X_n = i)$ 

# Theorem (Chapman-Kolmogorov formula):

Let us consider a homogeneous Markov chain  $\{X_k\}_{k=1,2,...}$  with finite set of states  $S = \{a_1, a_2, ..., a_s\}$  and a transition probability matrix **P**. Then for any 0 < m < n and any two states i,j the following formula holds

$$p_{ij}^{(n)} = \sum_{k=1}^{s} p_{ik}^{(m)} p_{kj}^{(n-m)}$$

$$p_{ij}(s,t) = P(X_t = j | X_s = i)$$
  
 $p_{ij}^{(n)} = P(X_{t+n} = j | X_t = i) = P(X_n = j | X_0 = i)$   $p_i^{(n)} = P(X_n = i)$ 

# Theorem (Chapman-Kolmogorov formula):

Let us consider a homogeneous Markov chain  $\{X_k\}_{k=1,2,...}$  with finite set of states  $S = \{a_1, a_2, ..., a_s\}$  and a transition probability matrix **P**. Then for any 0 < m < n and any two states i,j the following formula holds

$$p_{ij}^{(n)} = \sum_{k=1}^{s} p_{ik}^{(m)} p_{kj}^{(n-m)}$$

for the marginal distribution:  $p_i^{(n)} = \sum_{k=1}^s p_k^{(n-1)} p_{ki}$ , or in matrix form:  $\vec{p}^{(n)} = \vec{p}^{(n-1)}.P$ 

$$p_{ij}(s,t) = P(X_t = j | X_s = i)$$
  
 $p_{ij}^{(n)} = P(X_{t+n} = j | X_t = i) = P(X_n = j | X_0 = i)$   $p_i^{(n)} = P(X_n = i)$ 

# Theorem (Chapman-Kolmogorov formula):

Let us consider a homogeneous Markov chain  $\{X_k\}_{k=1,2,...}$  with finite set of states  $S = \{a_1, a_2, ..., a_s\}$  and a transition probability matrix **P**. Then for any 0 < m < n and any two states i,j the following formula holds

$$p_{ij}^{(n)} = \sum_{k=1}^{s} p_{ik}^{(m)} p_{kj}^{(n-m)}$$

for the marginal distribution:  $p_i^{(n)} = \sum_{k=1}^s p_k^{(n-1)} p_{ki}$ , or in matrix form:  $\vec{p}^{(n)} = \vec{p}^{(n-1)}.P$ 

If there exists  $\lim_{n\to+\infty} \vec{p}^{(n)} = \vec{\pi}$  (stationary distribution) then  $\vec{\pi} = \vec{\pi}.P$ 

$$\begin{array}{c|c}
 & p_1 \\
\hline
 & p_0
\end{array}$$

$$S = \{0,1\}$$
  
 $p = \{1,0\}$ 

$$\mathbf{P} = \begin{pmatrix} 1 - p_1 & p_1 \\ p_0 & 1 - p_0 \end{pmatrix}$$

$$\begin{array}{c}
 & p_1 \\
\hline
 & p_0
\end{array}$$

$$S = \{0,1\}$$
 $p = \{1,0\}$ 

$$\vec{\pi} = \vec{\pi}.P$$

$$\mathbf{P} = \begin{pmatrix} 1 - p_1 & p_1 \\ p_0 & 1 - p_0 \end{pmatrix}$$

$$\begin{array}{c}
 & p_1 \\
\hline
 & p_0
\end{array}$$

$$S = \{0,1\}$$
  
 $p = \{1,0\}$ 

$$\mathbf{P} = \begin{pmatrix} 1 - p_1 & p_1 \\ p_0 & 1 - p_0 \end{pmatrix}$$

$$\vec{\pi} = \vec{\pi}.P$$

$$P^T \vec{\pi}^T = \vec{\pi}^T$$

$$S = \{0,1\}$$
  
 $p = \{1,0\}$ 

$$\vec{\pi} = \vec{\pi}.P$$

$$P^T \vec{\pi}^T = \vec{\pi}^T$$

$$(P^T - I)\vec{\pi}^T = \vec{0}$$

$$\pi_0 + \pi_1 = 1$$

$$\begin{array}{c|c}
 & p_1 \\
\hline
 & p_0
\end{array}$$

$$\mathbf{P} = \begin{pmatrix} 1 - p_1 & p_1 \\ p_0 & 1 - p_0 \end{pmatrix}$$

$$\begin{pmatrix} -p_1 & p_0 \\ p_1 & -p_0 \end{pmatrix} \begin{pmatrix} \pi_0 \\ \pi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$S = \{0,1\}$$
  
 $p = \{1,0\}$ 

$$\vec{\pi} = \vec{\pi}.P$$

$$P^T \vec{\pi}^T = \vec{\pi}^T$$

$$(P^T - I)\vec{\pi}^T = \vec{0}$$

$$\pi_0 + \pi_1 = 1$$

$$\begin{array}{c|c}
 & p_1 \\
\hline
 & p_0
\end{array}$$

$$\mathbf{P} = \begin{pmatrix} 1 - p_1 & p_1 \\ p_0 & 1 - p_0 \end{pmatrix}$$

$$\begin{pmatrix} -p_1 & p_0 \\ p_1 & -p_0 \end{pmatrix} \begin{pmatrix} \pi_0 \\ \pi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\pi_0 = \frac{p_0}{p_0 + p_1}, \quad \pi_1 = \frac{p_1}{p_0 + p_1}$$

#### 2-state unreliable system:

$$\begin{array}{c|c}
 & p_1 \\
\hline
 & p_0
\end{array}$$

$$S = \{0,1\}$$
  
 $p = \{1,0\}$ 

$$\mathbf{P} = \begin{pmatrix} 1 - p_1 & p_1 \\ p_0 & 1 - p_0 \end{pmatrix}$$

$$\vec{\pi} = \vec{\pi}.P$$

$$P^T \vec{\pi}^T = \vec{\pi}^T$$

$$(P^T - I)\vec{\pi}^T = \vec{0}$$

$$\pi_0 + \pi_1 = 1$$

$$\begin{pmatrix} -p_1 & p_0 \\ p_1 & -p_0 \end{pmatrix} \begin{pmatrix} \pi_0 \\ \pi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\pi_0 = \frac{p_0}{p_0 + p_1}, \quad \pi_1 = \frac{p_1}{p_0 + p_1}$$

asymptotic availability asymptotic unavailability

 ${X_t}t \in \mathbf{R}$ 

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

 ${X_t}t \in \mathbf{R}$ 

• Markov property in continuous time:

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

•  $p_{ij}(s,t) \in [0,1], P(s,t) \ge \mathbf{0}$ 

 ${X_t}t \in \mathbf{R}$ 

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

- $p_{ij}(s,t) \in [0,1], P(s,t) \ge \mathbf{0}$
- $p_{ii}(t,t) = 1, p_{ij}(t,t) = 0, P(t,t) \ge I$

 ${X_t}t \in \mathbf{R}$ 

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

- $p_{ij}(s,t) \in [0,1], P(s,t) \ge \mathbf{0}$
- $p_{ii}(t,t) = 1, p_{ij}(t,t) = 0, P(t,t) \ge I$
- $\sum_{j\in\mathcal{S}} p_{ij}(s,t) = 1$ , P(s,t).e=e

 ${X_t}t \in \mathbf{R}$ 

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

- $p_{ij}(s,t) \in [0,1], P(s,t) \ge 0$
- $p_{ii}(t,t) = 1, p_{ij}(t,t) = 0, P(t,t) \ge I$
- $\sum_{j\in\mathcal{S}} p_{ij}(s,t) = 1$ , P(s,t).e=e
- Chapman-Kolmogorov equation:

$$p_{ij}(s, s+t+h) = \sum_{k \in \mathcal{S}} p_{ik}(s, s+t) p_{kj}(s+t, s+t+h)$$

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

- $p_{ij}(s,t) \in [0,1], P(s,t) \ge 0$
- $p_{ii}(t,t) = 1, p_{ij}(t,t) = 0, P(t,t) \ge I$
- $\sum_{j\in\mathcal{S}} p_{ij}(s,t) = 1$ , P(s,t).e=e
- Chapman-Kolmogorov equation:

$$p_{ij}(s, s+t+h) = \sum_{k \in \mathcal{S}} p_{ik}(s, s+t) p_{kj}(s+t, s+t+h)$$

$$P(s,s+t+h) = P(s,s+t).P(s+t,s+t+h)$$

Markov property in continuous time:

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

- $p_{ij}(s,t) \in [0,1], P(s,t) \ge 0$
- $p_{ii}(t,t) = 1, p_{ij}(t,t) = 0, P(t,t) \ge I$
- $\sum_{j\in\mathcal{S}} p_{ij}(s,t) = 1$ , P(s,t).e=e
- Chapman-Kolmogorov equation:

$$p_{ij}(s, s + t + h) = \sum_{k \in S} p_{ik}(s, s + t) p_{kj}(s + t, s + t + h)$$

$$P(s,s+t+h) = P(s,s+t).P(s+t,s+t+h)$$

• evolution law:  $p_j(s+t) = \sum_{k \in \mathcal{S}} p_k(s) p_{kj}(s,s+t)$  $\mathbf{p}(s+t) = \mathbf{p}(s).P(s,s+t)$ 

$${X_t}t \in \mathbf{R}$$

• Homogeneous process:  $p_{ij}(s,t) = p_{ij}(t-s)$ 

$${X_t}t \in \mathbf{R}$$

• Homogeneous process:  $p_{ij}(s,t) = p_{ij}(t-s)$ 

• Transition intensities: 
$$q_{ii} = \lim_{h \to 0+} \frac{p_{ii}(h) - 1}{h}$$
  $q_{ij} = \lim_{h \to 0+} \frac{p_{ij}(h)}{h}$ 

$${X_t}t \in \mathbf{R}$$

- Homogeneous process:  $p_{ij}(s,t) = p_{ij}(t-s)$
- Transition intensities:  $q_{ii} = \lim_{h \to 0+} \frac{p_{ii}(h) 1}{h}$   $q_{ij} = \lim_{h \to 0+} \frac{p_{ij}(h)}{h}$
- $q_{ii}$  = intensity of persistence in the state  $s_i$

$${X_t}t \in \mathbf{R}$$

- Homogeneous process:  $p_{ij}(s,t) = p_{ij}(t-s)$
- Transition intensities:  $q_{ii} = \lim_{h \to 0+} \frac{p_{ii}(h) 1}{h}$   $q_{ij} = \lim_{h \to 0+} \frac{p_{ij}(h)}{h}$
- $q_{ii}$  = intensity of persistence in the state  $s_i$
- the distribution of persistence in the state  $s_i \sim \text{Exp}(-q_{ii})$

$${X_t}t \in \mathbf{R}$$

- Homogeneous process:  $p_{ij}(s,t) = p_{ij}(t-s)$
- Transition intensities:  $q_{ii} = \lim_{h \to 0+} \frac{p_{ii}(h) 1}{h}$   $q_{ij} = \lim_{h \to 0+} \frac{p_{ij}(h)}{h}$
- $q_{ii}$  = intensity of persistence in the state  $s_i$
- the distribution of persistence in the state  $s_i \sim \text{Exp}(-q_{ii})$
- the transition intenzities matrix:

$$Q = \begin{pmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{n1} & q_{n2} & \cdots & q_{nn} \end{pmatrix}$$

$${X_t}t \in \mathbf{R}$$

- Homogeneous process:  $p_{ij}(s,t) = p_{ij}(t-s)$
- Transition intensities:  $q_{ii} = \lim_{h \to 0+} \frac{p_{ii}(h) 1}{h}$   $q_{ij} = \lim_{h \to 0+} \frac{p_{ij}(h)}{h}$
- $q_{ii}$  = intensity of persistence in the state  $s_i$
- the distribution of persistence in the state  $s_i \sim \text{Exp}(-q_{ii})$
- the transition intenzities matrix:  $Q = \begin{pmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{n1} & q_{n2} & \cdots & q_{nn} \end{pmatrix}$

• the system of Kolmogorov differential equations:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{p}(t) = \vec{p}(t) \cdot Q$$

$$S = \{0,1\}$$



$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$



$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$



$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$

$$p_{00}(h) = e^{-\lambda h} = 1 - \lambda h + o(h)$$



$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$

$$p_{00}(h) = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$p_{11}(h) = e^{-\mu h} = 1 - \mu h + o(h)$$



$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$

$$p_{00}(h) = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$p_{11}(h) = e^{-\mu h} = 1 - \mu h + o(h)$$

$$Q = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}$$



$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$

$$p_{00}(h) = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$p_{11}(h) = e^{-\mu h} = 1 - \mu h + o(h)$$

$$Q = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}$$

$$\lim_{t \to \infty} \vec{p}(t) = \vec{\pi}$$
$$0 = \vec{\pi} \cdot Q$$



$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$

$$p_{00}(h) = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$p_{11}(h) = e^{-\mu h} = 1 - \mu h + o(h)$$

$$Q = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}$$

$$\begin{array}{c}
\lambda \\
\hline
\mu
\end{array}$$

$$\frac{\mathrm{d}p_1(t)}{\mathrm{d}t} = -\lambda p_1(t) + \mu p_2(t)$$

$$\frac{\mathrm{d}p_2(t)}{\mathrm{d}t} = \lambda p_1(t) - \mu p_2(t)$$

$$p_1(0) = 1, \qquad p_2(0) = 0$$

$$\lim_{t \to \infty} \vec{p}(t) = \vec{\pi}$$
$$0 = \vec{\pi} \cdot Q$$

$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$

$$p_{00}(h) = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$p_{11}(h) = e^{-\mu h} = 1 - \mu h + o(h)$$

$$Q = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}$$

$$\lim_{t \to \infty} \vec{p}(t) = \vec{\pi}$$
$$0 = \vec{\pi} \cdot Q$$



$$\frac{\mathrm{d}p_1(t)}{\mathrm{d}t} = -\lambda p_1(t) + \mu p_2(t)$$

$$\frac{\mathrm{d}p_2(t)}{\mathrm{d}t} = \lambda p_1(t) - \mu p_2(t)$$

$$p_1(0) = 1, \qquad p_2(0) = 0$$

$$p_1(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

$$p_2(t) = \frac{\lambda}{\lambda + \mu} (1 - e^{-(\lambda + \mu)t})$$

$$S = \{0,1\}$$

$$p_{01}(h) = 1 - e^{-\lambda h} = \lambda h + o(h)$$

$$p_{10}(h) = 1 - e^{-\mu h} = \mu h + o(h)$$

$$p_{00}(h) = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$p_{11}(h) = e^{-\mu h} = 1 - \mu h + o(h)$$

$$Q = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}$$

$$\lim_{t \to \infty} \vec{p}(t) = \vec{\pi}$$
$$0 = \vec{\pi} \cdot Q$$

$$0 = \vec{\pi} \cdot Q$$

$$\begin{array}{c}
\lambda \\
\mu
\end{array}$$

$$\frac{\mathrm{d}p_1(t)}{\mathrm{d}t} = -\lambda p_1(t) + \mu p_2(t)$$

$$\frac{\mathrm{d}p_2(t)}{\mathrm{d}t} = \lambda p_1(t) - \mu p_2(t)$$

$$p_1(0) = 1, \qquad p_2(0) = 0$$

$$p_1(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

$$p_2(t) = \frac{\lambda}{\lambda + \mu} (1 - e^{-(\lambda + \mu)t})$$

$$\lim_{t\to\infty} p_1(t) = \frac{\mu}{\lambda + \mu}, \qquad \lim_{t\to\infty} p_2(t) = \frac{\lambda}{\lambda + \mu}$$

Logical unit in a protection system



## Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

WW = well working system

WFR = partially working system with recognizable failure

WFU = partially working system with unrecognizable failure

SF = system in safe failure



#### Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

WW = well working system

WFR = partially working system with recognizable failure

WFU = partially working system with unrecognizable failure

SF = system in safe failure



#### Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

WW = well working system

WFR = partially working system with recognizable failure

WFU = partially working system with unrecognizable failure

SF = system in safe failure



#### Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

WW = well working system

WFR = partially working system with recognizable failure

WFU = partially working system with unrecognizable failure

SF = system in safe failure



#### Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

WW = well working system

WFR = partially working system with recognizable failure

WFU = partially working system with unrecognizable failure

SF = system in safe failure



#### Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

WW = well working system

WFR = partially working system with recognizable failure

WFU = partially working system with unrecognizable failure

SF = system in safe failure



#### Logical unit in a protection system

$$S = \{WW, WFR, WFU, SF, DF\}$$

$$Q^* = \begin{pmatrix} q_{11}^* & \lambda_{12} & \lambda_{13} & \lambda_{15} \\ \mu_R & q_{22}^* & 0 & \lambda_{25} \\ \mu_U & 0 & q_{33}^* & \lambda_{35} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$Q = \begin{pmatrix} q_{11} & \lambda_{12} & \lambda_{13} \\ \mu_R & q_{22} & 0 \\ \mu_U & 0 & q_{33} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{14} & \lambda_{15} \\ \lambda_{24} & \lambda_{25} \\ \lambda_{35} & \lambda_{35} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\vec{a} = (1, 0, 0, 0, 0)$$



#### Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

$$Q = \begin{pmatrix} q_{11} & \lambda_{12} & \lambda_{13} \\ \mu_R & q_{22} & 0 \\ \mu_U & 0 & q_{33} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\vec{a} = (1, 0, 0, 0, 0)$$





#### Logical unit in a protection system

 $S = \{WW, WFR, WFU, SF, DF\}$ 

$$T_{DF} = -\vec{a}Q_{DF}^{-1}\vec{e}'$$

$$Q = \begin{pmatrix} q_{11} & \lambda_{12} & \lambda_{13} \\ \mu_R & q_{22} & 0 \\ \mu_U & 0 & q_{33} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{14} \\ \lambda_{24} \\ \lambda_{35} \\ \lambda_{3$$





 ${X_t}t \in \mathbf{R}$ 

• Markov property in continuous time:

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

• Markov property in continuous time:

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

• Inhomogeneous process:  $p_{ij}(s,t)$ , transition intensities:

$$q_{ii}(t) = \lim_{h \to 0_+} \frac{p_{ii}(t, t+h) - 1}{h}, \quad q_{ij}(t) = \lim_{h \to 0_+} \frac{p_{ij}(t, t+h)}{h}$$

• Markov property in continuous time:

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

• Inhomogeneous process:  $p_{ij}(s,t)$ , transition intensities:

$$q_{ii}(t) = \lim_{h \to 0_+} \frac{p_{ii}(t, t+h) - 1}{h}, \quad q_{ij}(t) = \lim_{h \to 0_+} \frac{p_{ij}(t, t+h)}{h}$$

 ${X_t}t \in \mathbf{R}$ 

Markov property in continuous time:

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

• Inhomogeneous process:  $p_{ij}(s,t)$ , transition intensities:

$$q_{ii}(t) = \lim_{h \to 0_+} \frac{p_{ii}(t, t+h) - 1}{h}, \quad q_{ij}(t) = \lim_{h \to 0_+} \frac{p_{ij}(t, t+h)}{h}$$

•  $q_{ii}(t)$  = intensity of persistence in the state  $s_i$ , the distribution of persistence in the state:  $p_{ii}(t, t+h) = \exp\left(-\int_0^h \sum_{j \neq i} q_{ij}(t+s) ds\right)$ 

Markov property in continuous time:

$$P(X_t = i \mid X_s = j) = P(X_t = i \mid X_s = j, X_{s_1} = j_1, ..., X_{s_k} = j_k) = p_{ij}(s, t)$$

• Inhomogeneous process:  $p_{ij}(s,t)$ , transition intensities:

$$q_{ii}(t) = \lim_{h \to 0_+} \frac{p_{ii}(t, t+h) - 1}{h}, \quad q_{ij}(t) = \lim_{h \to 0_+} \frac{p_{ij}(t, t+h)}{h}$$

- $q_{ii}(t)$  = intensity of persistence in the state  $s_i$ , the distribution of persistence in the state:  $p_{ii}(t, t+h) = \exp\left(-\int_0^h \sum_{j \neq i} q_{ij}(t+s) ds\right)$
- the system of Kolmogorov differential equations:

$$P'(t, t+h) = P(t, t+h).Q(t+h)$$

## Semi-Markov process

https://www.sciencedirect.com/topics/computer-science/semi-markov-process

## Semi-Markov process

$$\left\{ X_{t}\right\} t\geq0$$

- Random process with values in  $S = \{a_1, a_2, ..., a_s\}$ .
- Transitions between states occur in random times  $t_n = \sum_{i=0}^{n-1} \tau_i$ , n = 1, 2, ... only.
- Transitions follow some Markov process in discrete time wit transition matrix P (nested Markov process).
- Let  $F_{ij}(t)$  be a transition cdf between states i and j. Denote **H** the matrix of  $F_{ij}(t)$ .
- Semi-Markov process is given by the triple (p, P, H).
- The process  $\{(X_n, t_n)\}$ , n = 0, 1, 2, ... is homogeneous Markov process.
- Markov process in continuous time can be interpreted as a semi-Markov process with exponential persistence times.



$$\vec{p} = (p_0, p_1)$$
  $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$   $H = \begin{pmatrix} 1 - F_1(t) & F_1(t) \\ F_0(t) & 1 - F_0(t) \end{pmatrix}$ 

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$\vec{p} = (p_0, p_1)$$
  $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$   $H = \begin{pmatrix} 1 - F_1(t) & F_1(t) \\ F_0(t) & 1 - F_0(t) \end{pmatrix}$ 

$$\begin{array}{c}
q_{01} \\
\hline
q_{10}
\end{array}$$



$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$



$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$p_{01}(t, t+h) = P(X_{t+h} = 1 \mid X_t = 0)$$



$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$\begin{array}{c}
q_{01} \\
\hline
q_{10}
\end{array}$$

$$p_{01}(t, t+h) = P(X_{t+h} = 1 \mid X_t = 0) = P(T_1 \le t+h \mid T_1 > t) = \frac{P(T_1 \in (t, t+h))}{P(T_1 > t)}$$

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$\begin{array}{c}
q_{01} \\
\hline
q_{10}
\end{array}$$

$$p_{01}(t, t+h) = P(X_{t+h} = 1 \mid X_t = 0) = P(T_1 \le t+h \mid T_1 > t) = \frac{P(T_1 \in (t, t+h))}{P(T_1 > t)}$$

$$=\frac{1-\left(\frac{t+h}{\tau_1}\right)^{-\alpha}-\left[1-\left(\frac{t}{\tau_1}\right)^{-\alpha}\right]}{\left(\frac{t}{\tau_1}\right)^{-\alpha}}=1-\left(\frac{t+h}{t}\right)^{-\alpha}$$

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$\begin{array}{c}
q_{01} \\
\hline
q_{10}
\end{array}$$

$$p_{01}(t, t+h) = P(X_{t+h} = 1 \mid X_t = 0) = P(T_1 \le t+h \mid T_1 > t) = \frac{P(T_1 \in (t, t+h))}{P(T_1 > t)}$$

$$= \frac{1 - \left(\frac{t+h}{\tau_1}\right)^{-\alpha} - \left[1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}\right]}{\left(\frac{t}{\tau_1}\right)^{-\alpha}} = 1 - \left(\frac{t+h}{t}\right)^{-\alpha}$$

$$\left(\frac{t+h}{\tau_1}\right)^{-\alpha} = 1 - \frac{\alpha}{t}h + o(h), \quad h \to 0^+$$

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$\begin{array}{c}
q_{01} \\
\hline
q_{10}
\end{array}$$

$$p_{01}(t, t+h) = P(X_{t+h} = 1 \mid X_t = 0) = P(T_1 \le t+h \mid T_1 > t) = \frac{P(T_1 \in (t, t+h))}{P(T_1 > t)}$$

$$= \frac{1 - \left(\frac{t+h}{\tau_1}\right)^{-\alpha} - \left[1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}\right]}{\left(\frac{t}{\tau_1}\right)^{-\alpha}} = 1 - \left(\frac{t+h}{t}\right)^{-\alpha} = \frac{\alpha}{t}h + o(h), \quad h \to 0^+$$

## 2-state system with Pareto distribution (power law):

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$p_{01}(t, t+h) = \frac{\alpha}{t}h + o(h), \quad h \to 0^+$$

$$p_{10}(t, t+h) = \frac{\beta}{t}h + o(h), \quad h \to 0^+$$

$$\begin{array}{c}
q_{01} \\
\hline
q_{10}
\end{array}$$

Stationary distribution:  $\lim_{t \to \infty} \vec{p}(t) = \vec{\pi}$ 

$$0 = \vec{\pi} \cdot Q$$

$$\pi_0 = \frac{\beta}{\alpha + \beta}, \quad \pi_1 = \frac{\alpha}{\alpha + \beta}$$

Kolmogorov dif. eq.:

$$p'_{0}(t) = -\frac{\alpha}{t}p_{0}(t) + \frac{\beta}{t}p_{1}(t)$$
$$p'_{1}(t) = \frac{\alpha}{t}p_{0}(t) - \frac{\beta}{t}p_{1}(t)$$

$$p_0(0) = 1, \quad p_1(0) = 0$$

## 2-state system with Pareto distribution (power law):

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$p_{01}(t, t+h) = \frac{\alpha}{t}h + o(h), \quad h \to 0^+$$

$$p_{10}(t, t+h) = \frac{\beta}{t}h + o(h), \quad h \to 0^+$$



$$q_{01}(t) = \frac{\alpha}{t}$$

$$q_{10}(t) = \frac{\beta}{t}$$

Stationary distribution:  $\lim_{t\to\infty} \vec{p}(t) = \vec{\pi}$ 

$$0 = \vec{\pi} \cdot Q$$

$$\pi_0 = \frac{\beta}{\alpha + \beta}, \quad \pi_1 = \frac{\alpha}{\alpha + \beta}$$

Kolmogorov dif. eq.:

$$p'_{0}(t) = -\frac{\alpha}{t}p_{0}(t) + \frac{\beta}{t}p_{1}(t)$$

$$p'_{1}(t) = \frac{\alpha}{t}p_{0}(t) - \frac{\beta}{t}p_{1}(t)$$

$$p_{0}(0) = 1, \quad p_{1}(0) = 0$$

## 2-state system with Pareto distribution (power law):

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$p_{01}(t, t+h) = \frac{\alpha}{t}h + o(h), \quad h \to 0^+$$

$$p_{10}(t, t+h) = \frac{\beta}{t}h + o(h), \quad h \to 0^+$$



$$q_{00}(t) = -\frac{\alpha}{t} \qquad q_{01}(t) = \frac{\alpha}{t}$$

$$q_{10}(t) = \frac{\beta}{t} \qquad q_{11}(t) = -\frac{\beta}{t}$$

Stationary distribution:  $\lim_{t \to \infty} \vec{p}(t) = \vec{\pi}$ 

$$0 = \vec{\pi} \cdot Q$$

$$\pi_0 = \frac{\beta}{\alpha + \beta}, \quad \pi_1 = \frac{\alpha}{\alpha + \beta}$$

Kolmogorov dif. eq.:

$$p'_{0}(t) = -\frac{\alpha}{t}p_{0}(t) + \frac{\beta}{t}p_{1}(t)$$

$$p'_{1}(t) = \frac{\alpha}{t}p_{0}(t) - \frac{\beta}{t}p_{1}(t)$$

$$p_{0}(0) = 1, \quad p_{1}(0) = 0$$

## 2-state system with Pareto distribution (power law):

$$P(T_1 \le t) = F_1(t) = 1 - \left(\frac{t}{\tau_1}\right)^{-\alpha}, \ t \ge \tau_1$$

$$P(T_0 \le t) = F_0(t) = 1 - \left(\frac{t}{\tau_0}\right)^{-\beta}, \ t \ge \tau_0$$

$$p_{01}(t, t+h) = \frac{\alpha}{t}h + o(h), \quad h \to 0^+$$
$$p_{10}(t, t+h) = \frac{\beta}{t}h + o(h), \quad h \to 0^+$$

$$Q = \begin{pmatrix} -\alpha/t & \alpha/t \\ \beta/t & -\beta/t \end{pmatrix}$$

Stationary distribution:  $\lim_{t \to \infty} \vec{p}(t) = \vec{\pi}$   $0 = \vec{\pi} \cdot 0$ 

$$\pi_0 = \frac{\beta}{\alpha + \beta}, \quad \pi_1 = \frac{\alpha}{\alpha + \beta}$$



$$q_{00}(t) = -\frac{\alpha}{t}$$

$$q_{01}(t) = \frac{\alpha}{t}$$

$$q_{10}(t) = \frac{\beta}{t}$$

$$q_{11}(t) = -\frac{\beta}{t}$$

Kolmogorov dif. eq.:

$$p'_{0}(t) = -\frac{\alpha}{t}p_{0}(t) + \frac{\beta}{t}p_{1}(t)$$

$$p'_{1}(t) = \frac{\alpha}{t}p_{0}(t) - \frac{\beta}{t}p_{1}(t)$$

$$p_{0}(0) = 1, \quad p_{1}(0) = 0$$

### Markov process - random walk (Brownian motion)



https://en.wikipedia.org/wiki/Brownian\_motion

### Markov process - random walk (Lévi flight)



https://en.wikipedia.org/wiki/Lévy\_flight





### Thank you for your attention :-)

### Gejza Dohnal

Faculty of Mechanical Engineering Centre of Advanced Aerospace Technologies, Project CZ.02.1.01/0.0/16\_019/0000826



